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When a liquid, or gas flows through a particulate medium, its solid particles are subjected 
to hydrodynamic forces exerted by the stream, and to forces due to the interaction of adja- 
cent particles. Under certain conditions. of flow the medium disintegrates, its particles 
loose their regular contact with each other, and the medium (or a certain part of it) reaches 
the state of flnidization. It is of interest to determine the conditions of transition of the me- 
dium into that state. 

Practical requirements for this are, in the first instance, due to the rapid development 
of the fluidized bed technique in the chemical industry. For reasons of technological effeo 
tiveness of processes, vessels of industrial apparatus are in the main given complicated 
shapes, with nonuniform fluid distribution through the vessel’s cross section. Definite tech- 
nolo ‘cal advantages are obtained with vessels of a cross section increasing towards the 
top 1 and 21. In many processes (such as, for example, drying of particulate materials in a $ 
fluidized state) a gushing bed which is obtained, when a stream of gas is introduced from 
underneath into a packed bed, is used [3]. Finally, the problem of transition into the flui- 
dized state of a sand slug in a borehole, a problem which is relevant to the forecasting of 
petroleum yield limit, may be quoted. 

In the following we propose to formulate the problem of a particulate body transition into 
the flnidized state, as a problem of transient equilibrium of a body in which compressive 
stresses only can exist. Any strains present in it prior to the in stant of transition into the 
critical state are ignored, so that the body under consideration becomes in a sense analo- 
gous to a specific stiff-plastic body. A computation method has been evolved for the case 
of the two-dimensional problem, which petmits a reasonably effective determination of the 
critical fluid flow parameters on which depends the transition of a medium into the flnidized 
state. The two-dimensional problem is in certain respects similar to the problem of local 
buckling of a membrane [4]. Solutions of several specific problems of transition of a medium 
into the fluidized state are given, and a comparison is made of theoretical solutions with 
published experimental data on flaidization. 4 quantitative and qualitative correlation be- 
tween theory and experiment is revealed. 

1. St ate m en t o f pro b 1 em. Let us consider a particulate body in the interstices of 
which flows a liquid or gas. We shall use the concept of a continuous two-phase medium, i.e. 
we assume that at every point of space occupied by the particulate body and the fluid there 
are at the same time two continuous bodies, the state of one (the particulate body) being 
characterized by stresses and strains, and that of the other (the liquid or gas) by the pres- 
sure and velocity of moving particles. The interaction of these two media is determined ex- 
perimentally, and is reduced to the introduction into each of these of certain volume forces 
which at every point of space must evidently be equal in magnitude, and of opposite dimc- 
tiou. We assume that the particulate body voidage is fully detenuined by the fluid pressure, 
and the volume force by the fluid pressure and velocity. On these assumptions the fluid 
pressure and velocity may be determined independently of the stress and strain state of the 
particulate body. In the following analysis we shall conaider this part of the problem, which 
belongs to the classic problems of thr theory of filtration [s], as solved. 

We shall analyxo the stress and strain state of the particulate body under the action of 
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volume forces known from the solution of the corresponding filtration theory problem. We 
shall confine our analysis to a two-dimensional problem. The Eqs. of a particulate body 
static equilibrium are 

(1.11 

Here, crx, u 
YITXY 

are components of the stress tensor in an orthogonal system of Carte- 

coordinates xy , o (x, y) and b 6x, y) are components of the volume force vector along the 

x- aud y-axes respectivelv. taken with the opposite sign. We emphasize that stresses u,, 
0,’ 

A 
2 

Fig. 1 

generally applied in 

~ __ 
ffv* XY 

7 characterize the forces of the particulate body particles 
interaction. We apply the fundamental concept of the transient equi- 
librium theory, according to which at every point of a continuous 
medium in a critical state is fulfilled a certain relationship of the 

--4 form 

F (%, Q,, %c,) = 0 (1.21 

Here, function F depends on stresses and constants of the mat- 
erial. It is natural to make use of the von Mises postulate; then at 
every point of the body the strain increment vector will he normal 
to surface (1.21 at the corresponding point (associative law of 
flow). We disregard the body elastic strains. 

We shall now consider the selection of function F for the case 
of a particulate body. Let the two main stresses be compressive at 
every pop,t of a certain area of the body. The Coulomb’s law is 

# 
such cases 10J 

l/4 (6x - $J2 + 6” = ‘14 sin2 6 (a, + Gy + K ctg a)2 (1.31 

Here 6 and K are respectively, the angle ot internal frrction, and the coefficient of adho 
sion. 

We note that the medium considered here consists of separate particles, only loosely 
bound to each other. In the first approximation the forces of particles adhesion, which ar- 
ise when the body is in tension, may be neglected. With this assumption the medium contin- 
uity will be disturbed by an application of any arbitrarily small tension force, i.e. the body 
will disintegrate. It follows born these considerations that function F expressed in terms of 
the main stresses ut and og will be of the form shown on Fig. 1, where the medium in the 
shaded area is considered to be undeformable, and the state outside that area unattainable. 
The only problems which were considered in the theory of transient equilibrium of particu- 
late bodies, were those in which the two main stresses were compressive [6]. 

We shall analyze problems in which only the states along axen o1 and u2 (Fig. 11 are 
possible, i.e. on condition 

(1.4) 

where 7, I and un are respectively the tangent and normal stresses on any elementary plane 
within the packed layer. 

The latter occurs, for example, in the majority of technological problems concerning the 
transient equilibrium of a packed bed in a stream of liquid or gas. We note that the model of 
a medium which does not resist tension stresses was first proposed in [4] in connection with 
some other problems. 

The main stresses in a two-dimensional problem are: 

According to Fig. 1 the greatest of the main stresses under conditions of transient equi- 
librium is equal zero. Hence. 

The stated problem is reduced to the analysis of a quasi-linear system of Eqs. (1.11, 
(1.61. Condition (1.61 may be formally derived from Coulomb’s law with 6= ?4n. However, 
the mathematical construction changes considerably in this limiting case due to the change 
of the type of system (of [6] and Sections 2 and 3 of this paper). 
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2. System analysis. lo. Let the stresses be of the form 

(J, = - a2 (G Y), uy = - B” (I, y), z, = - a (G Y) B (z, Y) (2.1) 

Eq. (1.61 is fulfilled, and system (1.1) becomes 

We shall solve the Cauchy problem for system (2.2). Let arc x = xc Csi, y = yu (a), be 
specified in the xy-plane, for which functions a = a,, (a), fl= PO (a) are known. Differenti- 

ating the two latter functions with respect to the arc length s, we obtain two conditions for 

the ‘strip’ 

(2.3) 

Eqs. (2.2) and (2.3) represent a system of four linear algebraic equations with respect 
to the four unknown derivatives. 

Equating the determinant of this system to zero, we find 

a dy = fJ dx (2.4) 

Thus, system (2.2) has one set of characteristics, and is of the parabolic type. We shall 
find the relationshio which must be fulfilled along the characteristic. With this in view. we 
specify the charact’eristic as a line of weak dis&tinuity. In this cane the numerators in 
Cramer’s formulas must vanish, and we obtain the relationship 

f$-= day 
dx= 

ady__b 
dx 

(2.5) 

We shall establish the physical meaning of the characteristics. By virtue of (1.5) and 
(2.1) we have at every poinvf the body 

urnax = 9 urnin = (3, + tiV = - (a* + j3”) 

We shall calculate. angle 8 between the area element of the maximum main stress, which 
is equal zero, and the x-axis. We have 

-0, sin 8 + Z, COS 0 = 0 
From this, using Formulas (2.1) and (2.4), we obtain 

tg 0 = dy I dx (2.6) 

The characteristic is, therefore, a line along which normal and tangential stresses are 
zero. 

We shall take advantage of this property when analyzing condition (1.4). Let a6 be a 
stress along characteristics. Then, for any area element with its normal at angle, y to the 
tangent of the characterfstfc at a given point, we have 

z nt ?= Va sin 2y (-UC), u, = co9 y (- a~) (2.7) 
It follows from (2.7) that condition (1.4) Will be fulfflled for any y, when 

(2.8) 

20. fn any arbitrary orthogonal curvilinear coordinates t and 11 the initial system (1.1) will 
be of the form [7] 

ahHI (tg) 
En-yg-- = 

3 are stress components in the fycoordinate’system, Qc and Q,, are 
vo ume force vector along axea tand ~7, and H, and If, the LamC parame- 

ters 
HIa = (dx / dE)a + (8~ / aQa, H,2 = (ax / a+ + (ay / f9Tp (2.m 

The unknown equations of the set of characteristics are denoted by x = x ((, 71, y I y (.$ 
7) (condition 7j = const isolates one characteristic of the set). 

Now let lines r,r = conat be characteristics of the initial system (1.11, (1.6). As along 
characteristics Q = 0, T 
to the system of gqs. (1. ET 

P 0, Eqs. (2.9) may be written in the following form, equivalent 
), (1.6) 
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Components Qe and Q,, can obviously be expressed in terms of a and b 

QB=-a$-b~, Qn=+-b$ (2.12) 

For [ we simply take the length of arc of characteristic q = const. Then HI 2 = 1, or 

(&Z/at)* + (&J / at)’ = 1 for rl = con& (2.13) 
By virtue of (2.12) the second of Eqs. (2.11) may be written 

a6’y I i%$ = bdx / c?E (2.14) 

Taking into account (2.13) and (2.14) we find that along characteristic JI= const 
a’ 

=ppF+ (2.15) 

Stipulating for the set of characteristics an equation of the form y = y (x, $, and using 
(2.14). we readily derive the simple Eq. 

ay/aa:= b/a for q=const (2.16) 

Eq. (2.16) is used for the determination of the unknown set of characteristics (the arbi- 
trary constant appearfng In the solution of Eq. (2.16) is denoted above by 7). 

We rewrite the first of Eqs. (2.11) in the form 

H~QE + 4 (HGE) = 0 
Bearing in mind Formula (2.12), we integrate (2.17) 

(2.17) 

(2.18) 

Here the function A (7) is determined from the boundary conditions. 
If the set of characteristics is given in the form of Y = z ([, q), y = y @, 71, then by vir- 

tue of (2.101, (2.15) the only nnlrnown stress 06 is finally derived in the following form: 

* (2.19) 

The selection of the radical sign, here and throughout the following analysis, is best 
made on the ground of physical considerations. 

We shall now turn to a more convenient presentation of the set of characteristics in the 
form of y = y dz. 3). Having written down the result of differentiation of the identity y I y(x: 
(6, I#, 7) with respect to 7, together with the orthogonality condition of coordinates [T], we 
obtain system 

dy & -- 
dx atj 

+f+., 2E$+_%%=o 

Here, dy/dr and dy/dq dmo;e, as usual, partial derivatives of function y = y (x, 7). This 
notation has already been used above in Eq. (2.16). Solving this system for r!Ix/Jv and dy,/h 
and using Formulas (2.15) and (2.161, we obtain 

L3X ab dy 8Y a2 dy 

arl=- -iqSf’ arl=-- a2 + b? dq 

Thus, when the set of characteristics is specified in the form of y = y (z, q), then on the 
basis of (2.19) the oe-stress may be written down in one of the following simple forms 

(2.20) 

or 
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3. The boundary value problem. lo. The most convenient computation proce- 
dure for solving specific problems according to the foregoing is this: first of all, the field 
of characteristics is analyzed with the aid-of Eq. (2.16), then, using one of the Formulas 
(2.19). (2.20) or (2.211, the body stress field is ddtermined so as to satisfy the boundary 
conditions along the perimeter of the body. 

It is interesting to compare the results derived from the analysis of system (1.11, (1.61 
with those obtained earlier in (43 for the same system, but with s = b - 0. 

The system of Eqs. (1.11, (1.6) is quasi-linear when a f 0. b’ f 0, and belongs to the 
parabolic type, its only set of characteristics is fully defined by coefficients s&x, yl and 
b(r, y), and therefore is explicitly.independent of the body configuration and of the boon- 
dary conditions. In the degenerate case, when s = b = 0, the system is also quasi-linear, 
and belongs to the parabolic type, but its set of characteristics is fully determined by the 
form of the body, and by the bonndary conditions. 

In view of these peculiarities of the sets of characteristics, it is necessary to consider 
the question of the statement of a correct boundary value problem for these equations, i.e. 
a problem which would guarantee.the existence and uniqueness of its solution, as well as 
in a certain sense its stability with respect to perturbations of the body configuration and 
of the boundary conditions. It will be readily seen that the only correctly stated problem 
for system (1.11, (1.61 with a # 0, b d 0, will be the boundary value problem for sn arbitrary 
body boundary with surface forces at an angle arc &b/o) to the x-axis (i.e. surface loads 
must be directed along the characteristics). In fact, a solution cannot exist, if the loads at 
the body boundary wcTe orientated in any other way, because the eqnilibrlnm conditions 
(1.11 cannot be satisfied for medium (1.6) even in’ the neighborhood of the bonndary. On the 
other hand, if the stipulated condition as to the direction (of loads) is maintained, the boun- 
dary value probIem*will be correct for any single-valued fnnctions a and &, and for any ar- 
bitrary‘configuration of the body. This folIows from the analysis of the equation of charac- 
teristics (2.16) and Formula (2.20) for stress ue = o, + try, taking into account that ue can 
be determined along each of the characteristics independently of the field of 06 in the re- 
maining area, 

We remember that in the degenerate case with a = b = 0 any Canchy problem will bs a 
correct boundary value problem (provided that the characteristics do not intersect) [4]. In 
connection with the consideration of correct boundary value probIems for systems (l.l), 
(1.2) of the transient equilibrium theory, it should be pointed oat, in so far as this had not 
been previously mentioned in the literature, that with the transient equilibrium conditions 
(1.21 uresanted in the form 

which lead to systems of an elliptical type [3], the Cauchy boundary value problem is not 
correct. In particular, this case occurs in certain problems of the theory of two-dimensional 
plastic state of stress 19 and lo]. 

From this point of view Hill’s concept of the possibility of existence of pIas& status 
corresponding to circles entirely contained within Mohr’s envelope does not appeal to be 
tN6 fl3] 9. 337). 

29 We shall adduce au example of correctly stated boundary value problem for system 
(l.l), (1.6). Let there be, inside a heavy particulate medium contained in space I), a vesael 
filled with gas, or liquid occupying space D+ (Fig. 21. Boundary C, represents a rigid pep 
forated screen impervious to solid particles. With increasing pressure in vessel D+ tht gas 
begins to filter through the particulate body into space D, containing gas at a lower pressure 
At a certain pressure drop the medium reaches a critical state, after which it disintegrates, 
and the bed begins to ‘boil’. 

At pressure differentials smaller than, or equal to the critical the internal stresses of 
the medium are determined by Formulas (2.201 and (2.161. A change of the pressurc drop is 
generally accompanied by a change of the field of characteristics. We separate an arbitrary 
elementary strip AB of the particulate body situated betw66n adjacent charactzdstics (Fig. 
2). With very small pressure differentials between points A and B theoe-stress along the 
whole length of the strip is compressive, except at point B, where up is zero at any pressure 
drop. The latter is due to the crf-stress being a characteristic of the interaction of particles 
of the particulate body (see Note to (1.111, which becomes evident if an arbitrarily small ten- 
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sile stress is added to any hydrostatic pressure at point B of the particulate body surface. 
It is clear from physical considerations that with an increase of the pressure drou at a cer 1 

Fig. 2 

tain point E of the particulate body the at-stress 
will vanish. At that instant the volume forces ac- 
ting on the elementary strip BE in the proximity of 
characteristic AB passing through point E will 
obviously he in equilibrium. 

A further increase of the pressure drop will gen- 
erally result in an upward dynamic motion of the 
elementary column BE. This instant may well be 
considered as the beginning of the disintegration 
of the packed bed, and its transition into a flui- 
dized state. 

Thus, the unknown parameters of the critical 
state of a particulate body in a liquid, or gas are determined by the condition that the of- 
stress must vanish at a certain point within the body, with compressive at-stresses at all 
other points. This condition, although necessary, is generally not sufficient for the onset 
of disintegration (a case of indefinite equilibrium is possible). The case of gradual fonna- 
tion of an area of zero stresses in the surface neighborhood requires further study. 

It will be easy to deduce from the above example the kinematic pattern of the velocity 
field distribution with the use of the associative law of flow, and disregarding elastic 
strains. From the associative law we obtain equalities et* = 0, yil’ = 0, where EE’, and 
y<,,’ are the corresponding strain rate components. For these components we obtain a homo- 
genous linear system of two partial differential equations of the first order, for which it 
will be necessary to solve the Cauchy problem with respect to specified-velocities at screen 
Ct. Hence, if this screen is stationary, the particle velocities in the precritical stage will 
be zero throughout the body. At transition through the critical state the equilibrium of the 
elementary column BE will be violated. 

30. It should be noted that the stated critical equilibrium condition is also valid in the 
presence of solid walls, the introduction of which is, however, subject to two conditions: 
firstly, the wall must coincide with a streamline (filtration problem requirement), and sec- 
ondly, the following inequality must be satisfied along the wall 

z,,@‘) < K, + a,@) tg 8, (3.2) 

Here, 7,fw), u,(W) are respectively the tangent and the normal stresses at the wall, 6, 
is the angle of friction of the system particulate material - wall, and K, the adhesion coef- 
ficient of the articulate material to the wall. 

Condition 3.2) imposes certain limitations as regards angle yW between the tangent to P 
the characteristic at the intersection point of the latter with the wall, and the normal to the 
wall at that point. In fact, we have for ~,t(~) and ~a(‘“) 

Z,t(W) = */r sin 2r, (- cg), oh@) = co@ TW (- c+) (3.3) 
Substituting (3.3) into (3.2) we obtain condition 

ccz rw sin (rlU - 6,) d Ku, 
cos 6, - o4 

(3.4) 

Condition (3.4) is fulfilled for any Kw, 6,. and 06, when y, = Xn, i.e. when a character- 

istic coincides with the wall. In the absence of such coincidence, (3.4) is valid for any K, 
and 06 when y,,< 8,, or for any y, and 

l--W/I~,l 
8w a 2 arctg 1 + 2KJ GE 1 

(3.5) 

4. Certain one-dimensional problems of transient equilibrium. lo. 
Turning to the solution of epecific problems of transient equilibrium of beds in a stream of 
fluid, we shall first of all note that the resultant volume force acting on the particulate 
body, the components of which appear with opposite signs in the right hand sides of Eqs. of 
static equilibrium (1.1). is 

0, = p*F* - grad p (a = - Qr, b = - QJ (4.1) 
Here, p+ is the density of the two-phase system of packed bed and fluid, and Q the exter- 

nal mass force acting on the particulate body saturated by the fluid, and 
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P* - ep + (I - 8) P’, p*F* = epF + (1 - E) p’F’ (4.2) 
Here, E is the voidage of the particulate body, p and p’ are the respective densities of 

fluid and of solid particles, and F and F’ are vectors of external mass forces acting on 
the fluid and the solid phase respectively. Generally F f F’ (for example, under the influ- 
ence of a magnetic field). However, in practice usually F m F ‘, and in that case we have 
from (4.2) F* a F. 

The pressure gradient in (4.1) is found by solving the filtration problem, i.e. by solving 
with appropriate boundary conditions [5] the following system 

gradp=--$uD(I~j)-l-pF. divu = 0 (4.3) 

Here p is the fluid viscosity, k is the permeability coefficient, and @(IsI) a function of 
the filtration rate module u which determines the stipulated (generally nonlinear) filtration 
law. In practice the following linear approximation is generally used: 

~((l~l)=~+~l~l (4.4) 
The dependence of the permeability coefficient k, and of coefficient h appearing in (4.4) 

on the fluid properties, on the dimensions of the bed particles, and on the bed voidage is 
established by means of dimensional analysis with an approximation of the order of the nu- 
merical factor. In fact, 

1 grad p I- pLvn ln-2pnu,1+n 
where I is a characteristic interstice dimension, and U, the interstitial fluid velocity. If 
following Kozeny, we define I in the same manner as the hydrodynamic diameter of a chan- 
nel, then 1 = 1/e DE (1 - 8)-l, where D is the equivalent diameter of a particle of the 
bed, equal to the diameter of an isometric sphere. From the continuity condition we have 
UC = u I 8.. Hence, 

1 grad p 1 - ~1-nL)n-2pne-1-n (I_ e]tmn U1+~ 

If uDewl < 1, then grad p should be independent of p, therefore n = 0. On the other hand, 
when uDpc~’ >> 1, then grad p should be independent of cc, i.e. in this case n = 1. We may 
therefore conclude that 

.!!_= 
k 

cr II (1 - a)a , 
Da 83 

h,$!_& (4.5) 

where c1 and cz are numerical constants which may be determined by using, for example, 
the results obtained by Ergun [Ill, who had p recessed a considerable amount of experimen- 
tal dqt, a collected by other authors. According to [Ill, these constants are: cr = 150, 
ca = * 87.5’ 

2’. The pattern of transition of a bed into the fluidized state is simplest, when the 
characteristics of system (Ll), as defined by (2.16), coincide with streamlines. We shall 
first consider the case in which the bed is in a gravitational field, and is contained between 
vertical flat walls, with the fluid uniform!y fed from below through .the bed cross section. 
We direct the x-axis of an orthogonal Cartesian coordinate system along a normal to the wall, 
and the y-axis in the direction opposite to the gravity force, and assume that the charge 
occupies a space defined by 0s y <If (plane y = 0 is permeable to the fluid, but impervious 
to particles). 

The solution of system (4.3) is: u P 0, v = const, and dp/& = 0. According to (2.16) the 
characteristics in this case are straight lines x = const, hence, o, = T 
dition that at the free surface y = H, o,, = 0, we derive from Formulae 

CL. 0.:;:; the con- 

H 

%I=- (aplaY+P*g)dY 
s 

(4.6) 

If the parameters of a bed, i.e. its vlidage, density, and the size of its particles do not 
vary along its height, then obviously p * and ap/dy = const. It follows then from (4.6) that 
the transition of the bed into a fluidized state takes place simultaneously thronghoot its 
volume, and that the condition for the occurance of transition is defined by 

- ap I 8y = p*g (4.7) 
Condition (4.7) in the case of uniformly packed beds is well supported b experiment. 

The expression for the minimum filtration rate may be readily derived from 4.3) and (4.7). I 
The case of a uniformly packed bed was considered above. However, in practice cases 

of beds not packed uniformly along the column height are not infrequent. Such inhomogenuity 
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is usually connected with a nonuniform distribution of voidage along the height, and is due 
to local compaction of the bed. This lack of uniformity considerably affects the conditions 
and character of the bed transition into the fluidized state. Let there be, for example, in a 
uniformly packed bed with voidage EO an area of local compaction defined by h ,< y < h + 
+ hh (h > 0, h + Ah < H) with voidage E, < ep We shall analyze the equilibrium condition 
for this bed. From (4.6) and (4.5) it follows that 

cy” (Y). h+Ah<Y<H 

by= a,O(h+Ah)+~~l(y), h<y<h+Ah 

1 

(4.8) 

ouo (Y + Ah) + by1 (h), 0 6 Y < h 
where, by virtue of (4.4), we have 

oyo (Y) = [(It 1 4) u (1 + &,u) - (P’ - PM - eO) gl (H - Y) 

c.yl (Y) - [(II 1 ki) u (1 + &u) - (P’ - P) (1 - ci) gl (h + Ah - Y) 

(& = k (ei), 1, = h (q), i = 0, 1) 

(4.9) 

Substitution of functions k ( ei) and A( ej ) defined by (4.5) into (4.8) shows that the crit- 
ical state of the nonuniform bed considered, which corresponds to o becoming zero, oc- 
curs first of all at y = h, i.e. at the lower boundary of the compacte $1 ayer. 

The following Eq. of the critical velocity V* corresponds to this condition: - _ 

i 
H-;o-Ah ho++ v*a+ 1 ( H-;o-Ah +$.= 

(4.10) 

- [(H - h) (I- eo) + Ah (e. -+,)I .!$X!? g 

It follows specifically fmm (4.10) that u+ t < u+ < v *o where u*o and u+~ are the critical 
filtration rates corresponding to the transient equilibrium of uniformly packed layers with 
voidages E, and el. The distribution of stress a,(y) along the height of the nonuniform 
charge (4.81 and (4.9) has been plotted on Fig. 3, where curves 1, 2, 3 and 4 relate to fil- 
tration velocitiesv<u*t, u=u+l, u+r<u<u+, u=u+. 

The condition of the nonuniformly packed bed critical state is fulfilled only locally, 
hence, discontinuitics along the lower boundary of local compaction must be expected in 
such beds. The formation of these discontinuities in the form of distinctive cracks had been 
observed experimentally [ 121. 

It seems that the formation of local compacted layers of a bed followed by ruptures, is 
the basic mechanism of the slug formation process which can be observed during fluidiza- 
tion of beds of considerable height in tubes of small diameters. 

3’. In Subsection 2’ the mass force F was assumed to be constant throughout the bed 
volume. This condition however may not always be satisfied. As an example, we may quote 
the case of a rotating fluidized bed (the axis of rotation being normal to the plane of flow) 
used in rocketry 1131, and in chemical technology [14]. In this case the bed has the form of 
a ring lying on the inner surface of a circular cylinder rotating around its axis, with fluid 
being uniformly fed through the porous cylinder wall impervious to solid particles, and flow- 
ing radially towards the axis of rotation, i.e. the field of flow in a two-dimensional problem 
is defined by a sink at the axis of rotation. By superposing the axis of rotation on the coop 
dinate origin we obtain from (4.1) and (4.3) the following expressions for u and b: 

P!i x QQ 1 
a= kZxa+ya ( 2a-f 1/x2 + y” 1 

- - (1 - e) (p’ - p) 612x 

&_- Q?/ 
(4.111 

- k2nzz+yz 
@J- 1 

( 
- 

2x Vzr + !i= 1 
- (1 -s) (p’ - p) 02Y 

- 
where o is the an lar vcloci 

From (2.16) r 1 
of rotation, and q the flow rate. 

an (4.11) it fo lows that the characteristics arc straight lines passing 
through the coordinstc origin, i.e. the characteristics coincide with streamlines. Introducing 
a system of polar coordinates r, rep, WC obtain from (2.19) 

r 

(4.121 

As @ ( 1 o 1) is asnally a monotonously increasing function, the change of the or-stress 
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signdue to an increasing flow rate Q will first occur, in accordance with (4.121, at the 

bounda 
dition ( 

r = ru. 

% 

The corresponding minimum flow rate q+ is obviously defined by the COP 

/&l,,o = 0. We obtain 

$$” +$- =(l-&)(p’-p)o+o 
0 ( j cl 

Transition to the fluidized state is gradual, starting at the surface of the bed. This is 

0 h h+Ah // consistent with ph 
experimentally [ 14 T 

sical concepts, and is confirmed 
. 

We note that increasing the flow rate beyond qe = 
q+t,) results in a gradual ‘erosion’ of the Inner 

surface of a stationary bed, while the field of flow 

and that of characteristics remain unchanged. The 
free surface which separates the stationary layer of the bed, 

dized one where or = 0, is as before 
gradually approaches the external 
the bed becomes fluidized in its en- 

-G 1. Values of q+ and qrs are well 

I 5. Certain non-one-dimensional problems. 1’. Let us con- 

Fig. 3 
sider the two-dimensional problem of transient equilibrium of a bed in the 

gravitational field contained in vessel of a cross section increasing to- 
wards its top. 

Let the packed bed be comprised between two intersecting planes under anglesx to the 

Fig. 4 

vertical, bounded at the bottom by a cylindrical snr- 
face x2 + y2 = r? permeable to the fluid, but imper- 
vious to particles, with the upper free surface also 
of a cylindrical form x2 + y2 = R 2,The fluid is nni- 
formly fed through the permeable surface from under- 
neath. In this case the fluid flow field is defined by 
its source situated at the coordinate origin. For sim- 
plicity’s sake we shall limit our considerations to 
the linear law of filtration, and derive from (4.11 and 
(4.3) the following expressions for a and 6: 

a=- p Q x 
k x x2 A- 4 

a 

(5.11 
--E)(P’-P)g 

where q is the fluid flow rate. Integrating the Eq. of 
characteristics (2.161, we obtain the following one- 
parameter set 

Y=xtg(--x+rll 

G=(l---e)b’-p)g ( ; ; )-1 (5.2) 
which is represented on Fig.4 by solid lines. The field of characteristics has two singular 
points: a subcritical node at the coordinate origin (0, 0) and a saddle at point (0, l/G). 

Substituting (5.11 and (5.21 into (2.211, we find that for the characteristics which emerge 
through the free surface the expression of the UE -stress is 

GE = W I- 2GY + @ ‘I2 
%zTiq-p- ( i s 

’ 1/l -- 2GY + GaC,2 + Y”) ~/,a dti (5.3) 

I/O 
G (2” + y2) - Y 

where y. z JQ* 

by elliptic functions. 
1s the equation of the free surface. The integral in (5.3) is expressed 

From physical considerations it follows that the critical state is first reached on the line 
of symmetry x = 0. Passing in (5.3) to the limit x -+ 0, we obtain 

G4= ILQ_L__ L kx Y 
(I -e)(p’-p)g](R-y) for 5= 0 (5.4) 
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It follows from 5.4) thst the minimum flow rate q+, anfficisnt for ae to vanish inside the 

bed, corresponds to y = ru, aud is 

q*=?!+e)(p’- P) gro (5.5) 

It will be seen from (5.5) that in the subcritical state, i.e. when q <q*, the singular 
ooint (0. l/C) lies below the lower surface of the bed. while in the critics1 state. i.e. when . 
q = q+ it coincides with the central point of that snrfke. 

On the basis of the above considerations we obtain, in this case, the following pattern 
of transition of a bed into the flnidized state. At small rates of flow the field of character 
istics is of the form shown on Fig. 4, with the saddle point below the lower surface. Along 
the characteristics inside the bed the af-stresses are negative. An increasing flow rate is 
accompanied by a continuously changing field of characteristics, with the saddle point 
moving upwards along the axis of symmetry, until it reaches the lower surface of the bed at 
9 = q+. At that instant the o -stress vanishes at 
ro<y\<R beginstomoveo & ards. The field of R 

oint (0, rb) of the bed, and column x = 0, 
ow, and consequently the field of charao 

teristics undergo a change. A further increase of the flow rate results in an upward move_ 
ment of particles along the axis of the vessel, which is compensated by a downward motion 
of particles along the wall, i.e. a circulation of the solid phase is initiated which is so 
characteristic of fluidized beds in vessels of cross sections increasing towards the top [2 
and 1.51, as well as of spouting beds [3 and 151. 

2’. It is not difficult to exsmine the problem of transient equilibrium of a packed bed 
in a vessel tapering upwards by following the procedure of lo. The difference between this 
problem, and that considered in Subsection lo is as follows: the direction of the force of 
gravity has been reversed; the top free surface and the lower surface permeable to fluid 
only, are now expressed by Eqs. x2+ y2 = rd and x2 + y2 = R2 respectively; and a sink 
has been substituted for the source at the coordinate origin. The equation of characteris- 
tics retreinu ac before (5.2). and the field of characteristics corresponds to that shown on 
Fig. 4. 

For the stress along characteristic x = 0 we have the following expression, different 
from (5.4): 

bE = p9 i 
[ 

---(I--) (p’-pP)g 
kx Y 1 (Y--~) for r=O (5.6) 

It will be seen from (5.6) that with increasing flow rate q the change of theat-stress 
sign will first occur at y = ro. The corresponding minimum flow rate q* is obviously deter- 
mined by the condition that (&r, /ijy),, = 0, i.e. we have as before (5.5). 

In this case the transition into the fluidized state is by way of a gradual ‘erosion’ of the 
upper surface of the bed, commencing at the central point of the free surface. 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 

9. 
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